Independent Two-Color Optogenetic Excitation of Neural Populations

نویسندگان

  • Nathan Cao Klapoetke
  • Brian Chow
چکیده

The optical modulation of neurons with channelrhodopsins, a class of genetically encoded lightgated ion channels, has enabled the spatiotemporally precise interrogation of the roles individual cell types play in neural circuit dynamics. A topic of great interest to the neuroscience community is the independent optical excitation of two distinct neuron populations with different wavelengths, which would enable the interrogation of emergent phenomena such as circuit dynamics, plasticity, and neuromodulation. Previous implementations have focused on maximizing spectral separation by driving one channelrhodopsin in the violet (405 nm) and the other in the yellow (590 nm), yet it has not been possible to achieve independent violet excitation without eliciting spikes from both populations, due to the intrinsic UV-blue light sensitivity of the retinal chromophore. This thesis designs and implements an improved two-color excitation scheme where effective light sensitivity is utilized to achieve independent optical excitation in blue (470 nm) and red (625 nm) channels. Zero post-synaptic crosstalk is demonstrated in acute murine slice, using two novel channeirhodopsins identified from a systematic screen of 80 naturally occurring, previously uncharacterized opsins in primary neuron culture. Gene88 is the first known yellowpeaked channelrhodopsin, with a peak 45 nm more red-shifted than any previous channelrhodopsin, while Gene90 has the fastest channel turn on, turn off, and recovery kinetics of any known channelrhodopsin. These opsins' novel properties enable the first known demonstration of post-synaptic crosstalk-free two-color excitation with temporally precise modulation of spatially inseparable neuron populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.

By enabling a tight control of cell excitation, optogenetics is a powerful approach to study the function of neurons and neural circuits. With its transparent body, a fully mapped nervous system, easily quantifiable behaviors and many available genetic tools, Caenorhabditis elegans is an extremely well-suited model to decipher the functioning logic of the nervous system with optogenetics. Our g...

متن کامل

1 2 3 High - efficiency optogenetic silencing with soma - targeted anion - 4 conducting channelrhodopsins 5 6 7 8

24 Optogenetic silencing allows time-resolved functional interrogation of defined neuronal populations. 25 However, the limitations of inhibitory optogenetic tools impose stringent constraints on experimental 26 paradigms. The high light power requirement of light-driven ion pumps and their effects on intracellular 27 ion homeostasis pose unique challenges, particularly in experiments that dema...

متن کامل

Integrating optogenetic and pharmacological approaches to study neural circuit function: current applications and future directions.

Optogenetic strategies to control genetically distinct populations of neurons with light have been rapidly evolving and widely adopted by the neuroscience community as one of the most important tool sets to study neural circuit function. Although optogenetics have already reshaped neuroscience by allowing for more precise control of circuit function compared with traditional techniques, current...

متن کامل

Optogenetic modulation of neural circuits that underlie reward seeking.

The manifestation of complex neuropsychiatric disorders, such as drug and alcohol addiction, is thought to result from progressive maladaptive alterations in neural circuit function. Clearly, repeated drug exposure alters a distributed network of neural circuit elements. However, a more precise understanding of addiction has been hampered by an inability to control and, consequently, identify s...

متن کامل

Optogenetic investigation of neural circuits in vivo.

The recent development of light-activated optogenetic probes allows for the identification and manipulation of specific neural populations and their connections in awake animals with unprecedented spatial and temporal precision. This review describes the use of optogenetic tools to investigate neurons and neural circuits in vivo. We describe the current panel of optogenetic probes, methods of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014